Math 265
Professor Priyam Patel
11/4/13

Midterm 2 Practice Problems Answers

1. Yes. If you form the matrix $A=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]$ and row reduce you will find that rank $A=$ 3. Therefore, the columns of A and thus the set $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ are linearly independent. Since S consists of 3 vectors and $\operatorname{dim} \mathbb{R}^{3}=3$ we can then conclude that S spans \mathbb{R}^{3}.
2. Yes, A is in the span of those matrices. Check this by transforming each matrix into a 4 x 1 vector and setting up an augmented matrix and row reducing. I computed the coefficients to be $\left[\begin{array}{cc}5 & 1 \\ -1 & 9\end{array}\right]=2\left[\begin{array}{cc}1 & -1 \\ 0 & 3\end{array}\right]+1\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]+1\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right]$. Since A can be written as a linear combination of the 3 matrices, the set of all four matrices cannot be linearly independent.
3. Linearly dependent.
4. All $c \neq 1$ will make the set of vectors linearly independent.
5. A basis is $\left\{\left[\begin{array}{c}1 \\ -2 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 3 \\ 0\end{array}\right]\right\}$.
6. A basis is $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$.
7. A basis for V is $\left\{t^{3}+t^{2}+2 t+1, t^{3}-3 t+1, t^{2}+t+2, t+1\right\}$.
8. A basis for W is $\left\{\left[\begin{array}{c}-5 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}-7 \\ 0 \\ 3\end{array}\right]\right\}$ Note: your basis can be different than this! dim $W=$ 2. $\operatorname{dim} W^{\perp}=1$. A basis for W^{\perp} is $\left[\begin{array}{l}3 \\ 5 \\ 7\end{array}\right]$.
9. $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$.
10. A basis is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right\}$. A basis for V^{\perp} is $\left\{\left[\begin{array}{c}2 \\ -5 \\ 4\end{array}\right]\right\}$.
11. For Null $A k=n$, for Row $A k=n$ (technically this is a subspace of $\left.\mathbb{R}_{n}\right)$ and for $\operatorname{Col} A$ $k=m$.
12. Rank is 3 and nullity is 1 .
13. Is A is a 5×7 matrix, what are the possible values for rank A ? rank A can take any values between 0 and 5 .

If A is a 7×3 matrix, what are the possible values of $\operatorname{rank} A ? \operatorname{rank} A$ can take any values between 0 and 3 .

If A is a 4×6 matrix, what are the possible values for nullity A ? nullity A can take any values between 2 and 6 .
14. A basis for Row A is $\left\{\left[\begin{array}{lllll}1 & -2 & 0 & 0\end{array}\right],\left[\begin{array}{lllll}0 & 0 & 1 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]\right\}$. A basis for Null A is $\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]$. A basis for $\operatorname{Col} A$ is $\left\{\left[\begin{array}{l}2 \\ 2 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 3 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ -4 \\ -2 \\ 1\end{array}\right]\right\}$. rank $A=3$, nullity $A=1$, rank $A^{T}=3$, nullity $A^{T}=1$. Note: nullity $A=$ nullity A^{T} is only because A is sqaure!
15. nullity $A^{T}=1$
16. $\mathbf{u} \cdot \mathbf{v}=-5$ and $(\mathbf{u}+2 \mathbf{w}) \cdot(3 \mathbf{v}-\mathbf{w})=-105$.
17. $a=-2$ and $b=2$. No $\{\mathbf{v}, \mathbf{u}, \mathbf{w}\}$ does not form an orthogonal set because \mathbf{u} and \mathbf{w} are not orthogonal.
18. $\frac{1}{\sqrt{6}}\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ and $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
19. An orthogonal basis for the subspace is $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$.
20. A basis for V^{\perp} is $\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$. For $\mathbf{b}=\left[\begin{array}{l}4 \\ 3 \\ 1\end{array}\right], \operatorname{proj}_{V} \mathbf{b}=\left[\begin{array}{c}10 / 3 \\ 11 / 3 \\ 2 / 3\end{array}\right]$ and the distance from \mathbf{b} to V is 1 .
21. Orthogonal basis is $\left\{\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-4 \\ 1 \\ 2\end{array}\right]\right\}$. Orthonormal basis is $\left\{\frac{1}{\sqrt{14}}\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \frac{1}{\sqrt{21}}\left[\begin{array}{c}-4 \\ 1 \\ 2\end{array}\right]\right\}$
22. If A is an 4×4 matrix where $\operatorname{rank} A=4$, what can you say about $\operatorname{det} A$? $\operatorname{det} A \neq 0$.

Do the columns of A form a basis for \mathbb{R}^{4} ? Yes!

How many non-zero rows are there in the RREF of A? There are 4.

Does the system $A \mathbf{x}=\mathbf{b}$ have a solution for every $\mathbf{b} \in \mathbb{R}^{4}$? Yes.

If so, is the solution unique? Yes
23. If A is a 6×6 matrix where $\operatorname{rank} A=4$, what can you say about $\operatorname{det} A$? $\operatorname{det} A=0$.

Do the rows of A form a basis for \mathbb{R}_{4} ? This is a typo! The rows aren't even in \mathbb{R}_{4}, they are in \mathbb{R}_{6}. They cannot form a basis for \mathbb{R}_{6}.
What is the dimension of $\operatorname{Col} A^{T}$? 4
How many vectors are there in any basis for Null A ? 2
How many solutions are there to the homogeneous system $A \mathbf{x}=\mathbf{0}$? infinitely many
24. If A is a 4×4 matrix and $\operatorname{det} A=-3$ what is rank A ? 4
25. If A is a 3×3 matrix and det $A=0$, can you determine whether the column vectors of A form a basis for \mathbb{R}^{3} ? No they cannot form a basis because rank A cannot be 3 .

What are the possible values for rank A ? The possible values are 0,1 and 2 .

