NAME:

Math 265

Midterm Exam 1

October 1, 2013

Instructions:

- (1) Show your work. No credit will be given for unsupported answers to problems requiring computation. You may receive credit for partially correct work even if your final answer is incorrect.
- (2) You must use methods described thus far in the course when answering each question.
- (3) No books, notes or calculators are allowed.
- (4) If you need more room to write, write on the back of the page. DO NOT rip any pages apart from the test.

Number	Points earned
#1	
#2	
#3	
#4	
#5	
#6	
#7	
#8	
Total	

1. (a) Calculate the determinant of the following matrix.

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & 0 \\ 2 & -3 & 2 \end{bmatrix}$$

 $\det\,A =$

(b) Is A invertible? Explain.

2. Consider the following system of linear equations:

$$x_1 + 0x_2 + x_3 = 2$$
$$2x_1 + x_2 + 4x_3 = 5$$
$$x_1 + 0x_2 + 3x_3 = 6$$

Use Gaussian elimination to find the the general solution to the system. Please indicate EVERY elementary row operation you use and write your solution in **vector form**.

3. Let A and B be 4×3 matrices. Suppose B is obtained from A using the following elementary row operations:

1.
$$R_1 \leftrightarrow R_2$$

2.
$$2R_1 + R_2 \rightarrow R_2$$

3.
$$4R_3 \to R_3$$

Give the elementary matrix for each elementary row operation above:

1.
$$R_1 \leftrightarrow R_2$$

2.
$$2R_1 + R_2 \rightarrow R_2$$

3.
$$4R_3 \to R_3$$

4. Determine whether or not the following subset of \mathbb{R}^3 is a **subspace** of \mathbb{R}^3 . Show all of your work and explain your answer.

$$W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 : x_1 - 3x_2 + 5x_3 = 0 \right\}$$

- 5. Give an example of a matrix satisfying each of the following properties. If no such matrix exists please explain why.
 - (a) A 4×3 matrix R in reduced row echelon form such that $R\mathbf{x} = \mathbf{0}$ has exactly one solution.

(b) A 3×2 matrix A such that the subspace null $A = \{0\}$, and for every $\mathbf{b} \in \mathbb{R}^3$ the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution.

- 6. Let A be an $n \times n$ nonsingular matrix. Which of the following statements must be TRUE?
 - i) $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
 - ii) A must be row equivalent to the identity matrix.
 - iii) The system $A\mathbf{x} = \mathbf{b}$ always has a solution for all $\mathbf{b} \in \mathbb{R}^n$.
 - iv) det $A \neq 0$.
 - (a) All are true.
 - (b) i), ii) and iii) only
 - (c) iii) and iv) only
 - (d) ii), iii) and iv) only
 - (e) i), iii) and iv) only
- 7. If A is a 3 x 3 matrix with det A = 6 and B = 2A, what is $\det(A^T B^{-1})$?
 - (a) 1/2
 - (b) 72
 - (c) 48
 - (d) 1/8
 - (e) 1/72
- 8. Which of the following statements are always TRUE?
 - i) If a linear system $A\mathbf{x} = \mathbf{b}$ has m equations and n variables and m < n, then the system has infinitely many solutions.
 - ii) If A and B are $n \times n$ matrices and AB is nonsingular (invertible) then both A and B must be nonsingular.
 - iii) If A, B and C are $n \times n$ matrices such that AB = AC, then B = C.
 - (a) i) only
 - (b) ii) only
 - (c) i) and ii) only
 - (d) ii) and iii) only
 - (e) i), ii) and iii)