Math 265 Professor Priyam Patel 2/18/16

Class Handout #9

Recall that in the last class we talked about the following properties (a) (b) and 1 through 8 and concluded that if these properties hold for a set, then that set is a real vector space.

- (a) If \mathbf{u} and \mathbf{v} are *n*-vectors, then $\mathbf{u} + \mathbf{v}$ is an *n*-vector.
- (b) If \mathbf{u} is an *n*-vector and *c* is any real scalar, then $c\mathbf{u}$ is an *n*-vector.

If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors and c and d are real scalars, then:

- 1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 3. There exists and element 0, the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
- 4. For every vector **u**, there exists and element -**u** such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 5. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 6. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 7. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 8. 1**u**=**u**

Recall that we verified that all of these properties hold for \mathbb{R}^n , M_{mn} , P_n , P and $C(-\infty, \infty)$.

We define a new set \mathbb{R}_n to be a set of all $1 \times n$ matrices (look like row vectors). This set is also a vector space!

Question: Given a subset W of a vector space V, how can I tell if W is itself a vector space? If W is a vector space, we call it a *subspace* of V.

It's enough to check that properties (a) and (b) hold in W.

Exercise 1: Consider the vector space \mathbb{R}^2 . Are the following subsets W_i subspaces of \mathbb{R}^2 ?

Let W_1 be the subset of all vectors of the form $\begin{bmatrix} 0\\ y \end{bmatrix}$.

Let W_2 be the subset of all vectors of the form $\begin{bmatrix} x \\ y \end{bmatrix}$ where $y \ge 0$.

Exercise 2: Consider the vector space \mathbb{R}^3 . Is the following subset a subspace of \mathbb{R}^3 ?

Let W_4 be the subset of all vectors of the form $\begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$.

Exercise 3: Consider the vector space M_{33} . Are the following subsets W_i subspaces of M_{33} ? Let W_5 be the subset of all 3×3 matrices A with trace(A) = 0.

Let W_6 be the subset of all 3×3 matrices A with det(A) = 1.

Exercise 4: Consider the vector space P_2 . Is the following subset a subspace of P_2 ?

Let W_7 be the subset of all polynomials of the form $a_2x^2 + a_0$.

Let W_8 be the subset of all polynomials of the form $a_2x^2 + a_1x + 2$

Exercise 5: Consider the vector space \mathbb{R}^n . Is the following subset a subspace of \mathbb{R}^n ? Let W_9 be subset of all solutions to the system $A\mathbf{x} = \mathbf{0}$ where A is an $m \times n$ matrix. The set W_9 is often called the **null space** of the matrix A, that is to say that the null space of a matrix A is the solution set to the homogeneous system $A\mathbf{x} = \mathbf{0}$.

Let $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$ be vectors in a vector space V (think of V like \mathbb{R}^n). A vector \mathbf{v} is called a *linear combination* of $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$ if $\mathbf{v} = a_1\mathbf{v_1} + a_2\mathbf{v_2} + \cdots + a_k\mathbf{v_k}$ for some scalars $a_1, a_2, \ldots, a_k \in \mathbb{R}$.

Exercise 1: In
$$\mathbb{R}^3$$
, let $\mathbf{v_1} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 1\\ 0\\ 2 \end{bmatrix}$ and $\mathbf{v_3} = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$.
Is $\begin{bmatrix} 2\\ 4\\ 2 \end{bmatrix}$ a linear combination of $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3}$? How about $\begin{bmatrix} -1\\ -2\\ 2 \end{bmatrix}$? How about $\begin{bmatrix} 2\\ 1\\ 5 \end{bmatrix}$?

Let $S = {\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}}$ be a set of vectors in a vector space V. The set of all linear combinations of $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$ is denoted by span S or span ${\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}}$ and is a subspace of V.

Exercise 2: Let $V = \mathbb{R}^3$. How many vectors are in span $\{0\}$?

How many vectors are in span $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$?

Let $\mathbf{v_1}, \mathbf{v_2} \in \mathbb{R}^3$. How many vectors are in span $\{\mathbf{v_1}, \mathbf{v_2}\}$?