Math 265
Professor Priyam Patel
2/18/16

Class Handout \#9

Recall that in the last class we talked about the following properties (a) (b) and 1 through 8 and concluded that if these properties hold for a set, then that set is a real vector space.
(a) If \mathbf{u} and \mathbf{v} are n-vectors, then $\mathbf{u}+\mathbf{v}$ is an n-vector.
(b) If \mathbf{u} is an n-vector and c is any real scalar, then $c \mathbf{u}$ is an n-vector.

If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors and c and d are real scalars, then:

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
3. There exists and element $\mathbf{0}$, the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
4. For every vector \mathbf{u}, there exists and element $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
5. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
6. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
7. $c(d \mathbf{u})=(c d) \mathbf{u}$
8. $\mathbf{1 u}=\mathbf{u}$

Recall that we verified that all of these properties hold for $\mathbb{R}^{n}, M_{m n}, P_{n}, P$ and $C(-\infty, \infty)$.
We define a new set \mathbb{R}_{n} to be a set of all $1 \times n$ matrices (look like row vectors). This set is also a vector space!

Question: Given a subset W of a vector space V, how can I tell if W is itself a vector space? If W is a vector space, we call it a subspace of V.

It's enough to check that properties (a) and (b) hold in W.

Exercise 1: Consider the vector space \mathbb{R}^{2}. Are the following subsets W_{i} subspaces of \mathbb{R}^{2} ?

Let W_{1} be the subset of all vectors of the form $\left[\begin{array}{l}0 \\ y\end{array}\right]$.

Let W_{2} be the subset of all vectors of the form $\left[\begin{array}{l}x \\ y\end{array}\right]$ where $y \geq 0$.

Exercise 2: Consider the vector space \mathbb{R}^{3}. Is the following subset a subspace of \mathbb{R}^{3} ?

Let W_{4} be the subset of all vectors of the form $\left[\begin{array}{c}a \\ b \\ a+b\end{array}\right]$.

Exercise 3: Consider the vector space M_{33}. Are the following subsets W_{i} subspaces of M_{33} ?

Let W_{5} be the subset of all 3×3 matrices A with $\operatorname{trace}(A)=0$.

Let W_{6} be the subset of all 3×3 matrices A with $\operatorname{det}(A)=1$.

Exercise 4: Consider the vector space P_{2}. Is the following subset a subspace of P_{2} ?

Let W_{7} be the subset of all polynomials of the form $a_{2} x^{2}+a_{0}$.

Let W_{8} be the subset of all polynomials of the form $a_{2} x^{2}+a_{1} x+2$

Exercise 5: Consider the vector space \mathbb{R}^{n}. Is the following subset a subspace of \mathbb{R}^{n} ?

Let W_{9} be subset of all solutions to the system $A \mathbf{x}=\mathbf{0}$ where A is an $m \times n$ matrix.

The set W_{9} is often called the null space of the matrix A, that is to say that the null space of a matrix A is the solution set to the homogeneous system $A \mathbf{x}=\mathbf{0}$.

Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ be vectors in a vector space V (think of V like \mathbb{R}^{n}). A vector \mathbf{v} is called a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ if $\mathbf{v}=a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\cdots+a_{k} \mathbf{v}_{\mathbf{k}}$ for some scalars $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{R}$.

Exercise 1: In \mathbb{R}^{3}, let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
Is $\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$ a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$? How about $\left[\begin{array}{r}-1 \\ -2 \\ 2\end{array}\right]$? How about $\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$?

Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a set of vectors in a vector space V. The set of all linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ is denoted by span S or $\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ and is a subspace of V.

Exercise 2: Let $V=\mathbb{R}^{3}$. How many vectors are in span $\{\mathbf{0}\}$?

How many vectors are in span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$?

Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in \mathbb{R}^{\mathbf{3}}$. How many vectors are in $\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$?

