Math 265
Professor Priyam Patel
2/16/16
Class Handout \# 8

Theorem 4.1 (Properties of n-vectors):

If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^{n} and c and d are real scalars, then the following properties hold:

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
3. There exists and element $\mathbf{0}$, the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
4. For every vector \mathbf{u}, there exists and element $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
5. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
6. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
7. $c(d \mathbf{u})=(c d) \mathbf{u}$
8. $\mathbf{1} \mathbf{u}=\mathbf{u}$

Recall that we also said the following properties hold for \mathbb{R}^{n} (viewed as the set of all n vectors):
(a) If \mathbf{u} and \mathbf{v} are n-vectors, then $\mathbf{u}+\mathbf{v}$ is an n-vector.
(b) If \mathbf{u} is an n-vector and c is any real scalar, then $c \mathbf{u}$ is an n-vector.

Exercise 2: Let $M_{m n}$ be the set of all $m \times n$ matrices with real entries. Do the properties (a) and (b) above hold for $M_{m n}$?

Hint: (a) should be restated in the context of $M_{m n}$ as: If A and B are in $M_{m n}$ (they are two $m \times n$ matrices), is $A+B$ in $M_{m n}$? Property (b) should be similarly restated.

Do properties 1 through 8 of Theorem 4.1 above hold for $M_{m n}$? What plays the role of the zero vector in property 3 ?

Exercise 3: Let P_{n} be the set of all polynomials of degree $\leq n$ together with the zero polynomial $0(x)$.

Do properties (a) and (b) above hold for P_{n} ?
Do properties 1 through 8 of Theorem 4.1 above hold for P_{n} ? What plays the role of the zero vector in property 3 ?

Exercise 4: Let P be the set of all polynomials of any degree together with the zero polynomial $0(x)$.

Do properties (a) and (b) above hold for P ?
Do properties 1 through 8 of Theorem 4.1 above hold for P ? What plays the role of the zero vector in property 3 ?

Exercise 5: Let $C(-\infty, \infty)$ be the set of all real valued continuous functions on \mathbb{R}.
Do properties (a) and (b) above hold for $C(-\infty, \infty)$?
Do properties 1 through 8 of Theorem 4.1 above hold for $C(-\infty, \infty)$? What plays the role of the zero vector in property 3 ?

