Math 265 Professor Priyam Patel 2/16/16

Class Handout # 8

Theorem 4.1 (Properties of *n*-vectors):

If **u**, **v** and **w** are vectors in \mathbb{R}^n and *c* and *d* are real scalars, then the following properties hold:

- 1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 3. There exists and element 0, the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
- 4. For every vector **u**, there exists and element -**u** such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 5. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 6. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 7. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 8. 1**u**=**u**

Recall that we also said the following properties hold for \mathbb{R}^n (viewed as the set of all *n*-vectors):

- (a) If \mathbf{u} and \mathbf{v} are *n*-vectors, then $\mathbf{u} + \mathbf{v}$ is an *n*-vector.
- (b) If \mathbf{u} is an *n*-vector and *c* is any real scalar, then $c\mathbf{u}$ is an *n*-vector.

Exercise 2: Let M_{mn} be the **set** of all $m \ge n$ matrices with real entries. Do the properties (a) and (b) above hold for M_{mn} ?

Hint: (a) should be restated in the context of M_{mn} as: If A and B are in M_{mn} (they are two $m \ge n$ matrices), is A + B in M_{mn} ? Property (b) should be similarly restated.

Do properties 1 through 8 of Theorem 4.1 above hold for M_{mn} ? What plays the role of the zero vector in property 3?

Exercise 3: Let P_n be the set of all polynomials of degree $\leq n$ together with the zero polynomial 0(x).

Do properties (a) and (b) above hold for P_n ?

Do properties 1 through 8 of Theorem 4.1 above hold for P_n ? What plays the role of the zero vector in property 3?

Exercise 4: Let P be the set of all polynomials of any degree together with the zero polynomial 0(x).

Do properties (a) and (b) above hold for P?

Do properties 1 through 8 of Theorem 4.1 above hold for P? What plays the role of the zero vector in property 3?

Exercise 5: Let $C(-\infty, \infty)$ be the set of all real valued continuous functions on \mathbb{R} .

Do properties (a) and (b) above hold for $C(-\infty,\infty)$?

Do properties 1 through 8 of Theorem 4.1 above hold for $C(-\infty, \infty)$? What plays the role of the zero vector in property 3?