Math 265
Professor Priyam Patel
2/4/16

> Class Handout \#7

Exercise 1:

$A(\operatorname{adj} A)=\left[\begin{array}{rrr}3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3\end{array}\right]\left[\begin{array}{ccc}-18 & -6 & -10 \\ 17 & -10 & -1 \\ -6 & -2 & 28\end{array}\right]=$
$(\operatorname{adj} A) A=\left[\begin{array}{rcc}-18 & -6 & -10 \\ 17 & -10 & -1 \\ -6 & -2 & 28\end{array}\right]\left[\begin{array}{rrr}3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3\end{array}\right]=$

Exercise 2:

Consider the linear system $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & 2 & -3 \\ 0 & -2 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}1 \\ 4 \\ -3\end{array}\right]$.
Find the unique solution \mathbf{x} using Cramer's Rule.

Theorem 4.1 (Properties of n-vectors):

If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^{n} and c and d are real scalars, then the following properties hold:

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
3. There exists and element $\mathbf{0}$, the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
4. For every vector \mathbf{u}, there exists and element $\mathbf{- u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
5. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
6. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
7. $c(d \mathbf{u})=(c d) \mathbf{u}$
8. $\mathbf{1 u}=\mathbf{u}$

Exercise 3: Do the following properties hold for \mathbb{R}^{n} (viewed as the set of all n-vectors)?
(a) If \mathbf{u} and \mathbf{v} are n-vectors, then $\mathbf{u}+\mathbf{v}$ is an n-vector.
(b) If \mathbf{u} is an n-vector and c is any real scalar, then $c \mathbf{u}$ is an n-vector.

Definition: A real vector space is a set of elements V on which there are two operations (addition and scalar multiplication) which obey properties 1-8 and (a) and (b) above.

Note: Property (a) is called closed under addition and property (b) is called closed under scalar multiplication.

