Math 265
Professor Priyam Patel
2/2/16

Class Handout \#6

Exercise 1: What is det $\left[\begin{array}{ccc}2 & -4 & 13 \\ 0 & 3 & 2 \\ 0 & 0 & -1\end{array}\right]$?

Exercise 2:

Let A be a 4×4 matrix with $\operatorname{det}(A)=-2$.

- Describe the set of all solutions to the homogeneous system $A \mathbf{x}=\mathbf{0}$.
- What is the RREF of A ?
- Can the linear system $A \mathbf{x}=\mathbf{b}$ have more than one solution? Explain.
- Does A^{-1} exist?
- Give an expression for a solution to the linear system $A \mathbf{x}=\mathbf{b}$.

Exercise 3: Let A be a square matrix with $\operatorname{det}(A)=0$.

- What can you say about the RREF of A ?
- Can the system $A \mathbf{x}=\mathbf{b}$ have one solution? Can it have infinitely many solutions? Can it have no solution? Explain.
- How many solutions does the system $A \mathbf{x}=\mathbf{0}$ have?
- Does A^{-1} exist?

What we have shown is that the following statements are equivalent for an $n \mathrm{x} n$ matrix A :

1. A is invertible (nonsingular).
2. $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
3. A is row equivalent to I_{n}. (The RREF of A is I_{n}.)
4. The linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution for every n-vector \mathbf{b}.
5. A is a product of elementary matrices.
6. $\operatorname{det}(A) \neq 0$.

Example 1: Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -2 & 3 & 1 \\ 4 & 5 & -2\end{array}\right]$.

1. Find A_{21}
2. Find A_{22}
3. Find A_{23}
4. Use the above information to calculate the following:

$$
\begin{aligned}
& a_{31} A_{21}+a_{32} A_{22}+a_{33} A_{23}= \\
& a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}=
\end{aligned}
$$

Example 3:

$A(\operatorname{adj} A)=\left[\begin{array}{rrr}3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3\end{array}\right]\left[\begin{array}{ccc}-18 & -6 & -10 \\ 17 & -10 & -1 \\ -6 & -2 & 28\end{array}\right]=$
$(\operatorname{adj} A) A=\left[\begin{array}{ccc}-18 & -6 & -10 \\ 17 & -10 & -1 \\ -6 & -2 & 28\end{array}\right]\left[\begin{array}{rrr}3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3\end{array}\right]=$

Example 4:

Consider the linear system $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & 2 & -3 \\ 0 & -2 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}1 \\ 4 \\ -3\end{array}\right]$.
Find the unique solution \mathbf{x} using Cramer's Rule.

