Math 265
Professor Priyam Patel
1/19/16

Class Handout \#2

Recall from last class:

- Matrices are multiplied "row-by-column".

Side note: Just because $A B$ is defined does not mean that $B A$ is defined. And even when $A B$ and $B A$ are defined, it is possible for $A B \neq B A$.

- Matrix-vector multiplication (row-by-column) and matrix-vector multiplication as a linear combination

Side note: can think of the product matrix $A B$ as " A times the columns of B "

- Linear systems can be represented by matrix-vector products $A \mathbf{x}=\mathbf{b}$
A is called the coefficient matrix, and adjoining the column \mathbf{b} to A we get the augmented matrix $[A \mid \mathbf{b}]$ representing the linear system.

Very important: $A \mathbf{x}=\mathbf{b}$ is consistent if and only if the vector \mathbf{b} is a linear combination of the columns of the coefficient matrix A.

Section 1.4: Algebraic Properties of Matrix Operations
Theorem 1.1 Properties of matrix addition: Let A, B, and C be $m \times n$ matrices.

1. $A+B=B+A$.
2. $A+(B+C)=(A+B)+C$.
3. There is a unique $m \times n$ matrix O, called the zero matrix, such that $A+O=A$.
4. For each $m \times n$ matrix A, there exists a unique $m \times n$ matrix D such that $A+D=O$. $D=-A$ is called the negative of A.

Theorem 1.3 Properties of scalar multiplication: If r and s are real numbers and A and B are matrices of the appropriate sizes, then

1. $r(s A)=(r s) A$.
2. $(r+s) A=r A+s A$.
3. $r(A+B)=r A+r B$.
4. $A(r B)=r(A B)=(r A) B$.

Theorem 1.2 Properties of matrix multiplication: If A, B, and C are matrices of the appropriate sizes, then

1. $A(B C)=(A B) C$.
2. $(A+B) C=A C+B C$.
3. $C(A+B)=C A+C A$.

Question: What property is missing from this list?

Two other peculiarities through example:
Example 1: Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and let $B=\left[\begin{array}{cc}4 & -6 \\ -2 & 3\end{array}\right]$. What is $A B$?

Example 2: Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]$, and $C=\left[\begin{array}{cc}-2 & 7 \\ 5 & -1\end{array}\right]$. Calculate $A B$ and $A C$.

Theorem 1.3 Properties of Transpose: If r is a scalar and A and B are matrices of the appropriate sizes, then

1. $\left(A^{T}\right)^{T}=A$.
2. $(A+B)^{T}=A^{T}+B^{T}$.
3. $(A B)^{T}=B^{T} A^{T}$.
4. $(r A)^{T}=r A^{T}$.

Section 1.5: Special Types of Matrices and Partitioned Matrices
What is special about the following matrices?

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -3
\end{array}\right] B=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
D=\left[\begin{array}{ccc}
1 & 3 & 3 \\
0 & 3 & -5 \\
0 & 0 & 2
\end{array}\right] E=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 2 & 0 \\
3 & 5 & 3
\end{array}\right] \\
F=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] G=\left[\begin{array}{ccc}
0 & 2 & 3 \\
-2 & 0 & -4 \\
-3 & 4 & 0
\end{array}\right]
\end{gathered}
$$

