Math 265
Professor Priyam Patel
4/7/16

Class Handout \#17

The nice thing about linear transformations is that once you know $L(\mathbf{u})$ and $L(\mathbf{v})$ you know how L transforms any linear combination of \mathbf{u} and \mathbf{v}. For example, if $L(\mathbf{u})=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $L(\mathbf{v})=\left[\begin{array}{c}-3 \\ 1 \\ 5\end{array}\right]$, what is $L(3 \mathbf{u}-2 \mathbf{v}) ?$

What this means is that is $L: V \longrightarrow W$ is a linear transformation, and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is a basis for V, then once we know $L\left(\mathbf{v}_{1}\right), \ldots, L\left(\mathbf{v}_{n}\right)$, we know $L(\mathbf{v})$ for any $\mathbf{v} \in V$.

Let's examine a special case of this. Let $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$. Then for a random vector $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{R}^{n}$, we know that $L\left(\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]\right)=v_{1} L\left(\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]\right)+v_{2} L\left(\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right]\right)+\cdots+v_{n} L\left(\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]\right)$.

This means $L(\mathbf{v})=A \mathbf{v}$ where $A=$

The matrix A above is called the standard matrix for L.

Theorem 6.3: Let $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the $m \mathrm{x} n$ matrix whose j th column is $L\left(\mathbf{e}_{\mathbf{j}}\right)$. Then A, which we call the standard matrix for L, is the unique matrix with the property that $A \mathbf{x}=L(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^{n}$.
Exercise 1: Let $L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be the linear transformation defined by $L\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=$ $\left[\begin{array}{c}x_{1}+2 x_{2} \\ 3 x_{2}-2 x_{3}\end{array}\right]$. Find the standard matrix A for L.

Exercise 2: Let $L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the linear transformation defined by $L(\mathbf{u})=5 \mathbf{u}$. Find the standard matrix A for L. This sort of linear transformation is called a dilation.

Eigenvalues and eigenvectors:

Definition: Let A be an $n \mathrm{x} n$ matrix (the fact that A is square is important). A nonzero vector $\mathbf{x} \in \mathbb{R}^{n}$ is called an eigenvector of A is $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ. The scalar λ is called an eigenvalue of A.

Example: Let $\mathbf{x}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ and $A=\left[\begin{array}{ccc}5 & 2 & 1 \\ -2 & 1 & -1 \\ 2 & 2 & 4\end{array}\right]$. Verify that \mathbf{x} is an eigenvector of A and find the corresponding eigenvalue.

Theorem 7.1: Let A be an $n \mathrm{x} n$ matrix. The eigenvalues of A are the roots of the characteristic polynomial of A (that is they are precisely the solutions of the characteristic equation $\left.\operatorname{det}\left(A-\lambda I_{n}\right)=0\right)$.

Procedure for finding eigenvalues and corresponding eigenvectors:

Step 1: Determine the roots of the characteristic $p(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$. These are the eigenvalues of A.

Step 2: For each root λ_{0}, find all nontrivial solutions to the homogeneous system

$$
\left(A-\lambda_{0} I_{n}\right) \mathbf{x}=\mathbf{0} .
$$

By solving for the null space of the matrix $\left(A-\lambda_{0} I_{n}\right)$ you can find a basis for the $\lambda_{0}{ }^{-}$ eigenspace.

Exercise 3: Find all eigenvalues and a basis for each corresponding eigenspace of

$$
A=\left[\begin{array}{ccc}
1 & 2 & 6 \\
0 & 2 & 4 \\
0 & 0 & -3
\end{array}\right]
$$

Exercise 4: Find the eigenvalues for $A=\left[\begin{array}{ccc}0 & 0 & 3 \\ 1 & 0 & -1 \\ 0 & 1 & 3\end{array}\right]$.

