Math 265 Professor Priyam Patel 4/5/16

Class Handout #16

Least Squares Approximation

Our goal: When $A\mathbf{x} = \mathbf{b}$ is inconsistent, find the closest thing we can to a solution, that is find an $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that $A\hat{\mathbf{x}}$ is as close as possible to \mathbf{b} .

We find all *least squares solutions* $\hat{\mathbf{x}}$ by solving the *normal system* $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

Theorem 5.14 When rank A = n, the least squares solution $\hat{\mathbf{x}}$ to the normal system is unique and $A\hat{\mathbf{x}} = \operatorname{proj}_{ColA} \mathbf{b}$.

Exercise 1: (Set up the following problem.) Find the least squares solution to $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 1 & 1 & 2 \\ -2 & 3 & 4 & 1 \\ 4 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 1 & -1 & 2 & 0 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 5 \\ -2 \\ 1 \\ 3 \\ 5 \end{bmatrix}$$

Most common application of least squares approximation:

You are given a data set and need to find the best fit line, parabola, function. In general, we are looking for the coefficients x_1, x_2, \ldots, x_n so the $y(t) = x_1f_1(t) + x_2f_2(t) + \cdots + x_nf_n(t)$ is the function that best fits the data set.

Example: The following data show atmospheric pollutants y_i at half hour intervals t_i :

	1								
y_i	-0.15	0.24	0.68	1.04	1.21	1.15	0.86	0.41	-0.08

Exercise 1: For the data above, set up an inconsistent system $A\mathbf{x} = \mathbf{y}$ for which you would like to find the least squares solution.

Example: In the manufacturing of a product Z, the amount of compound A present depends on the amount of ingredient B used in the refining process. The following data was obtained:

B used	2	4	6	8	10
A present	3.5	8.2	10.5	12.9	14.6

Exercise 2: For the data above, set up an inconsistent system $A\mathbf{x} = \mathbf{y}$ for which you would like to find the least squares solution.

Section 6.1:

Definition: Let V and W be vector spaces. A function $L: V \longrightarrow W$ is called a *linear* transformation of V into W if:

- 1. $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$ for any \mathbf{u} and \mathbf{v} in V.
- 2. $L(c\mathbf{u}) = cL(\mathbf{u})$ for any \mathbf{u} in V and any scalar c.

Exercise 3: Let $L : \mathbb{R}_3 \longrightarrow \mathbb{R}_3$ be defined by $L(\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}) = \begin{bmatrix} 2u_1 & 2u_2 & 2u_3 \end{bmatrix}$. Is L a linear transformation?

Exercise 4: Let $L : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be defined by $L\left(\begin{bmatrix}u_1\\u_2\\u_3\end{bmatrix}\right) = \begin{bmatrix}u_1+1\\2u_2\\u_3\end{bmatrix}$. Is L a linear transformation?

The nice thing about linear transformations is that once you know $L(\mathbf{u})$ and $L(\mathbf{v})$ you know how L transforms any linear combination of \mathbf{u} and \mathbf{v} . For example, if $L(\mathbf{u}) = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$ and

$$L(\mathbf{v}) = \begin{bmatrix} -3\\1\\5 \end{bmatrix}$$
, what is $L(3\mathbf{u} - 2\mathbf{v})$?

What this means is that is $L: V \longrightarrow W$ is a linear transformation, and $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is a basis for V, then once we know $L(\mathbf{v}_1), \ldots, L(\mathbf{v}_n)$, we know $L(\mathbf{v})$ for any $\mathbf{v} \in V$.

Let's examine a special case of this. Let
$$L : \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
. Then for a random vector $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$, we know that $L \begin{pmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \end{pmatrix} = v_1 L \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \end{pmatrix} + v_2 L \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \end{pmatrix} + \dots + v_n L \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \end{pmatrix}$.

This means $L(\mathbf{v}) = A\mathbf{v}$ where A =

The matrix A above is called the *standard matrix* for L.

Exercise 5: Let $L : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by $L\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ 3x_2 - 2x_3 \end{bmatrix}$. Find the standard matrix A for L.

Exercise 6: Let $L : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear transformation defined by $L(\mathbf{u}) = 5\mathbf{u}$. Find the standard matrix A for L.