Math 265
Professor Priyam Patel
4/5/16

Class Handout \#16

Least Squares Approximation

Our goal: When $A \mathbf{x}=\mathbf{b}$ is inconsistent, find the closest thing we can to a solution, that is find an $\widehat{\mathbf{x}} \in \mathbb{R}^{n}$ such that $A \widehat{\mathbf{x}}$ is as close as possible to \mathbf{b}.

We find all least squares solutions $\widehat{\mathbf{x}}$ by solving the normal system $A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b}$.

Theorem 5.14 When rank $A=n$, the least squares solution $\widehat{\mathbf{x}}$ to the normal system is unique and $A \widehat{\mathbf{x}}=\operatorname{proj}_{\mathrm{Col} A} \mathbf{b}$.
Exercise 1: (Set up the following problem.) Find the least squares solution to $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
2 & 1 & 1 & 2 \\
-2 & 3 & 4 & 1 \\
4 & 2 & 1 & 0 \\
0 & 2 & 1 & 3 \\
1 & -1 & 2 & 0
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
1 \\
5 \\
-2 \\
1 \\
3 \\
5
\end{array}\right]
$$

Most common application of least squares approximation:
You are given a data set and need to find the best fit line, parabola, function. In general, we are looking for the coefficients $x_{1}, x_{2}, \ldots, x_{n}$ so the $y(t)=x_{1} f_{1}(t)+x_{2} f_{2}(t)+\cdots+x_{n} f_{n}(t)$ is the function that best fits the data set.

Example: The following data show atmospheric pollutants y_{i} at half hour intervals t_{i} :

t_{i}	1	1.5	2	2.5	3	3.5	4	4.5	5
y_{i}	-0.15	0.24	0.68	1.04	1.21	1.15	0.86	0.41	-0.08

Exercise 1: For the data above, set up an inconsistent system $A \mathbf{x}=\mathbf{y}$ for which you would like to find the least squares solution.

Example: In the manufacturing of a product Z, the amount of compound A present depends on the amount of ingredient B used in the refining process. The following data was obtained:

B used	2	4	6	8	10
A present	3.5	8.2	10.5	12.9	14.6

Exercise 2: For the data above, set up an inconsistent system $A \mathbf{x}=\mathbf{y}$ for which you would like to find the least squares solution.

Section 6.1:

Definition: Let V and W be vector spaces. A function $L: V \longrightarrow W$ is called a linear transformation of V into W if:

1. $L(\mathbf{u}+\mathbf{v})=L(\mathbf{u})+L(\mathbf{v})$ for any \mathbf{u} and \mathbf{v} in V.
2. $L(c \mathbf{u})=c L(\mathbf{u})$ for any \mathbf{u} in V and any scalar c.

Exercise 3: Let $L: \mathbb{R}_{3} \longrightarrow \mathbb{R}_{3}$ be defined by $L\left(\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]\right)=\left[\begin{array}{lll}2 u_{1} & 2 u_{2} & 2 u_{3}\end{array}\right]$. Is L a linear transformation?

Exercise 4: Let $L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be defined by $L\left(\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]\right)=\left[\begin{array}{c}u_{1}+1 \\ 2 u_{2} \\ u_{3}\end{array}\right]$. Is L a linear transformation?

The nice thing about linear transformations is that once you know $L(\mathbf{u})$ and $L(\mathbf{v})$ you know how L transforms any linear combination of \mathbf{u} and \mathbf{v}. For example, if $L(\mathbf{u})=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $L(\mathbf{v})=\left[\begin{array}{c}-3 \\ 1 \\ 5\end{array}\right]$, what is $L(3 \mathbf{u}-2 \mathbf{v}) ?$

What this means is that is $L: V \longrightarrow W$ is a linear transformation, and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is a basis for V, then once we know $L\left(\mathbf{v}_{1}\right), \ldots, L\left(\mathbf{v}_{n}\right)$, we know $L(\mathbf{v})$ for any $\mathbf{v} \in V$.

Let's examine a special case of this. Let $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$. Then for a random vector $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{R}^{n}$, we know that $L\left(\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]\right)=v_{1} L\left(\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]\right)+v_{2} L\left(\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right]\right)+\cdots+v_{n} L\left(\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]\right)$.

This means $L(\mathbf{v})=A \mathbf{v}$ where $A=$

The matrix A above is called the standard matrix for L.
Exercise 5: Let $L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be the linear transformation defined by $L\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=$ $\left[\begin{array}{c}x_{1}+2 x_{2} \\ 3 x_{2}-2 x_{3}\end{array}\right]$. Find the standard matrix A for L.

Exercise 6: Let $L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the linear transformation defined by $L(\mathbf{u})=5 \mathbf{u}$. Find the standard matrix A for L.

