Math 265
Professor Priyam Patel
3/31/16

> Class Handout \#15

Exercise 1:

Let $W=\operatorname{Span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$ where $\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{u}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right]$. Apply the GramSchmidt process to obtain an orthogonal basis for W and then find an orthonormal basis for W.

Exercise 2: Let $\mathbf{u}=\left[\begin{array}{l}2 \\ 3 \\ 5 \\ 3\end{array}\right]$. Write \mathbf{u} as a linear combination of the orthogonal basis obtained in Exercise 1.

Exercise 3: (Discuss how you would do the following exercise, you don't need to complete it.)

Find an orthonormal basis for the subspace of \mathbb{R}^{4} consisting of all vectors of the form $\left[\begin{array}{c}a-b-c \\ a \\ a-b \\ b-c\end{array}\right]$.

Definition: A vector \mathbf{u} is orthogonal to a subspace W of a vector space V if it is orthogonal to every single vector in W. The orthogonal complement, W^{\perp}, is the set of all vectors in V that are orthogonal to every vector in W.

That is, $W^{\perp}=\{\mathbf{v} \in V: \mathbf{v} \cdot \mathbf{u}=0$ for every $\mathbf{u} \in W\}$.

Note: $\mathbf{0} \in W^{\perp}$ always.
Note: W^{\perp} is actually a subspace of V.
Note: $W \cap W^{\perp}=\mathbf{0}$.
Example 1:

What this suggests is that:
Theorem 5.10: Let W be a subspace of V. Then for any vector $\mathbf{v} \in V, \mathbf{v}=\mathbf{w}+\mathbf{u}$ where $\mathbf{w} \in W$ and $\mathbf{u} \in W^{\perp}$. We often write this as $W \oplus W^{\perp}=V$. Note that this also means that if V is n-dimensional, then $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\quad .(N o t e$: we will see how to compute \mathbf{w} and \mathbf{u} shortly.)

Theorem 5.11: $\left(W^{\perp}\right)^{\perp}=W$.
Let's try to figure out what W^{\perp} is when W is one of our favorite subspaces, like the row space or column space of A.

Example 2:

Theorem 5.12: If A is an $m \times n$ matrix, then:

Procedure for finding a basis for W^{\perp} :

- Find a spanning set (or basis) for the subspace W using methods that you know. If you are given a spanning set then you can just use that or produce a basis from that spanning set.
- Put the basis vectors into the rows of a matrix A.
- Find a basis for Null A using the vector form of the solution set to $A \mathbf{x}=\mathbf{0}$.

Orthogonal Projections:

We talked last time about projecting vectors onto other vectors. Now we want to discuss projecting a vector onto a subspace W. Recall that for any $\mathbf{v} \in V, \mathbf{v}=\mathbf{w}+\mathbf{u}$, where $\mathbf{w} \in W$ and $\mathbf{u} \in W^{\perp}$. Given an orthogonal basis $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}$ for W (which we can find using the Gram-Schmidt process), then the orthogonal projection of \mathbf{v} onto W is

$$
\mathbf{w}=\frac{\mathbf{v} \cdot \mathbf{w}_{\mathbf{1}}}{\mathbf{w}_{\mathbf{1}} \cdot \mathbf{w}_{\mathbf{1}}} \mathbf{w}_{1}+\frac{\mathbf{v} \cdot \mathbf{w}_{\mathbf{2}}}{\mathbf{w}_{\mathbf{2}} \cdot \mathbf{w}_{\mathbf{2}}} \mathbf{w}_{2}+\cdots+\frac{\mathbf{v} \cdot \mathbf{w}_{\mathbf{m}}}{\mathbf{w}_{\mathbf{m}} \cdot \mathbf{w}_{\mathbf{m}}} \mathbf{w}_{m} .
$$

If we were given an orthonormal basis, then $\left\|w_{i}\right\|^{2}=1$ for all i and

$$
\mathbf{w}=\left(\mathbf{v} \cdot \mathbf{w}_{\mathbf{1}}\right) \mathbf{w}_{\mathbf{1}}+\left(\mathbf{v} \cdot \mathbf{w}_{\mathbf{2}}\right) \mathbf{w}_{\mathbf{2}}+\cdots+\left(\mathbf{v} \cdot \mathbf{w}_{\mathbf{m}}\right) \mathbf{w}_{\mathbf{m}} .
$$

We often use the notation $\operatorname{proj}_{W}(\mathbf{v})=\mathbf{w}$. This is the closest vector in W to \mathbf{v} ! Now, how do we find $\mathbf{u} \in W^{\perp}$? Recall how we did this for 2 vectors:

So $\mathbf{u}=\mathbf{v}-\mathbf{w} \in W^{\perp}$. Then $\mathbf{v}=\mathbf{w}+\mathbf{u}$ where $\mathbf{w} \in W$ and $\mathbf{u} \in W^{\perp}$
Lastly, to find the distance from \mathbf{v} to W, we calculate $\left\|\mathbf{v}-\operatorname{proj}_{W} \mathbf{v}\right\|=\|\mathbf{v}-\mathbf{w}\|=\|\mathbf{u}\|$.

Exercise 4: Let W be the two-dimensional subspace of \mathbb{R}^{3} with orthogonal basis $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$, where

$$
\mathbf{w}_{1}=\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Find the orthogonal projection of $\mathbf{v}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ onto W, then calculate the vector \mathbf{u} and the distance from \mathbf{v} to W.

