Math 265 Professor Priyam Patel 3/31/16

Class Handout #15

Exercise 1:

Let $W = \text{Span}\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ where $\mathbf{u_1} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\mathbf{u_2} = \begin{bmatrix} 2\\1\\0\\1 \end{bmatrix}$ and $\mathbf{u_3} = \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$. Apply the Gram-Schmidt process to obtain an orthogonal basis for W and then find an orthonormal basis for W.

Exercise 2: Let
$$\mathbf{u} = \begin{bmatrix} 2\\3\\5\\3 \end{bmatrix}$$
. Write \mathbf{u} as a linear combination of the orthogonal basis obtained in Exercise 1.

Exercise 3: (Discuss how you would do the following exercise, you don't need to complete it.)

Find an orthonormal basis for the subspace of \mathbb{R}^4 consisting of all vectors of the form $\left\lceil a-b-c\right\rceil$

 $\begin{bmatrix} a-b-c\\ a\\ a-b\\ b-c \end{bmatrix}.$

Definition: A vector **u** is orthogonal to a subspace W of a vector space V if it is orthogonal to every single vector in W. The *orthogonal complement*, W^{\perp} , is the set of all vectors in V that are orthogonal to every vector in W.

That is, $W^{\perp} = \{ \mathbf{v} \in V : \mathbf{v} \cdot \mathbf{u} = 0 \text{ for every } \mathbf{u} \in W \}.$

Note: $\mathbf{0} \in W^{\perp}$ always.

Note: W^{\perp} is actually a subspace of V.

Note: $W \cap W^{\perp} = \mathbf{0}$.

Example 1:

What this suggests is that:

Theorem 5.10: Let W be a subspace of V. Then for any vector $\mathbf{v} \in V$, $\mathbf{v} = \mathbf{w} + \mathbf{u}$ where $\mathbf{w} \in W$ and $\mathbf{u} \in W^{\perp}$. We often write this as $W \oplus W^{\perp} = V$. Note that this also means that if V is *n*-dimensional, then dim $W + \dim W^{\perp} = \dots$. (*Note: we will see how to compute* \mathbf{w} and \mathbf{u} shortly.)

Theorem 5.11: $(W^{\perp})^{\perp} = W$.

Let's try to figure out what W^{\perp} is when W is one of our favorite subspaces, like the row space or column space of A.

Example 2:

Theorem 5.12: If A is an $m \times n$ matrix, then:

- is the orthogonal complement of the row space of A.
- is the orthogonal complement of the column space of A.

Procedure for finding a basis for W^{\perp} :

- Find a spanning set (or basis) for the subspace W using methods that you know. If you are given a spanning set then you can just use that or produce a basis from that spanning set.
- Put the basis vectors into the rows of a matrix A.
- Find a basis for Null A using the vector form of the solution set to $A\mathbf{x} = \mathbf{0}$.

Orthogonal Projections:

We talked last time about projecting vectors onto other vectors. Now we want to discuss projecting a vector onto a subspace W. Recall that for any $\mathbf{v} \in V$, $\mathbf{v} = \mathbf{w} + \mathbf{u}$, where $\mathbf{w} \in W$ and $\mathbf{u} \in W^{\perp}$. Given an orthogonal basis $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ for W (which we can find using the Gram-Schmidt process), then the **orthogonal projection** of \mathbf{v} onto W is

$$\mathbf{w} = \frac{\mathbf{v} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \frac{\mathbf{v} \cdot \mathbf{w}_2}{\mathbf{w}_2 \cdot \mathbf{w}_2} \mathbf{w}_2 + \dots + \frac{\mathbf{v} \cdot \mathbf{w}_m}{\mathbf{w}_m \cdot \mathbf{w}_m} \mathbf{w}_m.$$

If we were given an orthonormal basis, then $||w_i||^2 = 1$ for all *i* and

$$\mathbf{w} = (\mathbf{v} \cdot \mathbf{w_1})\mathbf{w_1} + (\mathbf{v} \cdot \mathbf{w_2})\mathbf{w_2} + \dots + (\mathbf{v} \cdot \mathbf{w_m})\mathbf{w_m}.$$

We often use the notation $\operatorname{proj}_W(\mathbf{v}) = \mathbf{w}$. This is the closest vector in W to \mathbf{v} ! Now, how do we find $\mathbf{u} \in W^{\perp}$? Recall how we did this for 2 vectors:

So $\mathbf{u} = \mathbf{v} - \mathbf{w} \in W^{\perp}$. Then $\mathbf{v} = \mathbf{w} + \mathbf{u}$ where $\mathbf{w} \in W$ and $\mathbf{u} \in W^{\perp}$ Lastly, to find the distance from \mathbf{v} to W, we calculate $\|\mathbf{v} - \operatorname{proj}_W \mathbf{v}\| = \|\mathbf{v} - \mathbf{w}\| = \|\mathbf{u}\|$. **Exercise 4:** Let W be the two-dimensional subspace of \mathbb{R}^3 with orthogonal basis $\{\mathbf{w}_1, \mathbf{w}_2\}$, where

$$\mathbf{w}_1 = \begin{bmatrix} 2\\ -1\\ -2 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}.$$

Find the orthogonal projection of $\mathbf{v} = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$ onto W, then calculate the vector \mathbf{u} and the distance from \mathbf{v} to W.