Math 265
Professor Priyam Patel
3/29/16

Class Handout \#14

Vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}$ and \mathbb{R}^{n}

Exercise 1:

What are the lengths of $\mathbf{v}=\left[\begin{array}{c}-1 \\ 5\end{array}\right] \in \mathbb{R}^{2}$ and $\mathbf{u}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right] \in \mathbb{R}^{3}$?

What is the distance between the vectors $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-4 \\ 3 \\ 5\end{array}\right]$?

Properties of the Dot Product/Standard Inner Product on \mathbb{R}^{n}

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in \mathbb{R}^{n} and let c be a scalar. The standard inner product on \mathbb{R}^{n} has the following properties:

1. $\mathbf{u} \cdot \mathbf{u} \geq \mathbf{0} ; \mathbf{u} \cdot \mathbf{u}=\mathbf{0}$ iff $\mathbf{u}=\mathbf{0}$
2. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
3. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
4. $c \mathbf{u} \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot c \mathbf{v}$

Exercise 2:

Calculate the angles between the following pairs of vectors: $\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$ and $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right]$, and $\mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ and $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$.

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then \mathbf{u} and \mathbf{v} are orthogonal (perpendicular) iff $\mathbf{u} \cdot \mathbf{v}=0$.

A unit vector is a vector of length 1 .

Definition: A set of vectors S in \mathbb{R}^{n} (or \mathbb{R}_{n}) is called an orthogonal set if any two distinct vectors in S are orthogonal, that is, the set of vectors is pairwise orthogonal. If, in addition, each vector in S is a unit vector, then S is called an orthonormal set.

Example: Standard basis in \mathbb{R}^{n} is an orthonormal set with respect to the standard inner product (dot product).

Note: If S consists of k non-zero vectors and is orthogonal, we can always produce an orthonormal set of k vectors from S.

Exercise 3: Which of the following sets of vectors are orthogonal, orthonormal or neither? For those that are orthogonal or orthonomal, is the set linearly independent? If a set below is orthogonal, but not orthonormal, produce the related orthonormal set of vectors if you can.
$S_{1}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
$S_{2}=\left\{\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]\right\}$
$S_{3}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$

Exercise 4: Let $\mathbf{u}=\left[\begin{array}{c}1 \\ 1 \\ -3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}a \\ -2 \\ 3\end{array}\right]$. For what value of a are \mathbf{u} and \mathbf{v} orthogonal?
Theorem 5.4: Let $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal set of non-zero vectors in \mathbb{R}^{n} or \mathbb{R}_{n}. Then S is linearly independent.

Section 5.3 Summarized:

Why do we call the dot product the "standard" inner product? Because any operation (u, v) on vectors in vector space V that satisfy the properties that the dot product satisfies is called an inner product.

Example: In \mathbb{R}^{2} let $(\mathbf{u}, \mathbf{v})=u_{1} v_{1}-u_{2} v_{1}-u_{1} v_{2}+3 u_{2} v_{2}$. Then this operation on pairs of vectors is an inner product on \mathbb{R}^{2}.

Example: In the the vector space V of continuous real-valued functions, let

$$
(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

This is an inner product on V.

Section 5.4:

Definitions: An orthogonal set of vectors S that is also a basis for a subspace of \mathbb{R}^{n} is called an orthogonal basis for that subspace. Likewise, an orthonormal set of vectors S that is also a basis for a subspace of \mathbb{R}^{n} is called an orthonormal basis for that subspace.

Theorem 5.5: Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a an orthogonal basis for a subspace W and let \mathbf{u} be any vector in W. Then, $\mathbf{u}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}$ where

$$
c_{i}=\frac{\mathbf{u} \cdot \mathbf{v}_{\mathbf{i}}}{\mathbf{v}_{\mathbf{i}} \cdot \mathbf{v}_{\mathbf{i}}}=\frac{\mathbf{u} \cdot \mathbf{v}_{\mathbf{i}}}{\left\|v_{i}\right\|^{2}} .
$$

If S is an orthonormal basis, then $\left\|v_{i}\right\|^{2}=1$ for all i and

$$
\mathbf{u}=\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{\mathbf{1}}+\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{2}}\right) \mathbf{v}_{\mathbf{2}}+\cdots+\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{k}}\right) \mathbf{v}_{\mathbf{k}} .
$$

Exercise 5: Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}5 \\ -4 \\ 1\end{array}\right]$. Verify that $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is an orthogonal set. Therefore, S is a basis for \mathbb{R}^{3}.

Let $\mathbf{u}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$. Find the coefficients c_{1}, c_{2}, c_{3} in $\mathbf{u}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}$.

