Math 265
Professor Priyam Patel
$3 / 3 / 16$

Class Handout \#12

Recall from last time:

1. Basis for a vector space V : A set of vectors that spans V and is linearly independent.
2. Note: Basis for a vector space is not unique.
3. How to verify a set of vectors is a basis for a vector space or subspace (verify two properties).
4. Method for finding a basis for $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$.

Exercise 1:

Consider the vector space P_{3} and let $S=\left\{t^{3}+t^{2}-2 t+1, t^{2}+1, t^{3}-2 t, 2 t^{3}+3 t^{2}-4 t+3\right\}$. Find a basis for the subspace $W=\operatorname{Span} S$.

Theorem 4.10: If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V and $T=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{r}\right\}$ is a set of linearly independent vectors in V then T has at most n vectors in it, that is $r \leq n$.

Corollary 4.1: Every basis of a vector space V has the same number of vectors in it.
Dimension: The dimension of a vector space or a subspace is the number of vectors in any basis for that space, and is denoted by $\operatorname{dim} V$.

Note: We already know the dimensions of our favorite vector spaces!
Corollary 4.4: If a vector space V has dimension n, then any set of more than n vectors in V must be linearly dependent.

Corollary 4.5: If a vector space V has dimension n, then any set of less than n vectors in V cannot span V.

Theorem 4.12: Let V be an n-dimensional vector space.

- If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set of n vectors in V, then S is a basis for V.
- If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ spans V, then S is a basis for V.

Exercise 2:

Consider the vector space \mathbb{R}^{3}. Find a basis for the subspace W of all vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ where $a=2 b$. What is the $\operatorname{dim} W ?$

Exercise 3:

Consider the vector space M_{22}. Find a basis for the subspace W of all vectors (2×2 matrices) A such that $\operatorname{tr} A=0$. What is the $\operatorname{dim} W$?

Exercise 4:

Consider the subspace W of P_{2} formed by all polynomials $a t^{2}+b t+c$ where $a-b-c=0$. Find a basis for W. What is $\operatorname{dim} W$?

Recall: The null space of a matrix A, null A, is the solution space for the homogeneous system $A \mathrm{x}=\mathbf{0}$

Definition: The dimension of null A is called the nullity of A.

Exercise 5:

Let $A=\left[\begin{array}{lll}1 & -1 & 1 \\ 1 & -2 & 0 \\ 2 & -3 & 2\end{array}\right]$. Find a basis for null A and find the nullity of A.

Theorem: The spanning vectors in the solution set to the homogenous system $A \mathbf{x}=\mathbf{0}$ are linearly independent and therefore form a basis for null A.

Exercise 6:

Suppose A is a 3×5 matrix and we reduce the augmented matrix $\left[\begin{array}{ll}A & \mathbf{0}\end{array}\right]$ to $\left[\begin{array}{ll}R & \mathbf{0}\end{array}\right]$, where R is in reduced row echelon form and has 3 pivot positions. What is the nullity of A ?

Suppose A is a 6×4 matrix and we reduce the augmented matrix $\left[\begin{array}{ll}A & \mathbf{0}\end{array}\right]$ to $\left[\begin{array}{ll}R & \mathbf{0}\end{array}\right]$, where R is in reduced row echelon form and has 2 pivot positions. What is the nullity of A ?

Can you think of a general rule for computing the nullity of an $m \times n$ matrix A where the RREF R of A has r pivot positions?

Exercise 7:

Let $A=\left[\begin{array}{ccccc}1 & 1 & 4 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & -1 & 0 & 0 & 2 \\ 2 & 1 & 6 & 0 & 1\end{array}\right]$. Find the nullity of A.

