Math 265 Professor Priyam Patel 2/25/16

Class Handout #11

Recall from last time:

Exercise 7: In \mathbb{R}^3 , let $\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\mathbf{v_3} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

Determine whether $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ spans \mathbb{R}^3 . This is the same as checking whether every vector $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3$ is a linear combination of $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3}$.

Exercise 8: In P_2 , let $\mathbf{v_1} = t^2 + 2t + 1$ and $\mathbf{v_2} = t^2 + 2$. Does $\{\mathbf{v_1}, \mathbf{v_2}\}$ span P_2 ?

Section 4.5: Linear Independence

Leading question: What is the span of $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$ and what is the span of $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\5 \end{bmatrix} \right\}$?

Exercise 1: Let
$$\mathbf{v_1} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 0\\1\\3\\-1 \end{bmatrix}$ and $\mathbf{v_3} = \begin{bmatrix} 0\\0\\2\\4 \end{bmatrix}$ in \mathbb{R}^4 . Is the set of vectors

 $S = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ linearly dependent or linearly independent?

Exercise 1.5: Let $\mathbf{v_1} = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 0 & 1 & 3 & -1 \end{bmatrix}$ and $\mathbf{v_3} = \begin{bmatrix} 0 & 0 & 2 & 4 \end{bmatrix}$ in \mathbb{R}_4 . Is the set of vectors $S = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ linearly dependent or linearly independent?

Exercise 2: Are the vectors $\mathbf{v_1} = t^2 + t + 2$, $\mathbf{v_2} = 2t^2 + t$ and $\mathbf{v_3} = t + 4$ in P_2 linearly dependent or linearly independent?

Exercise 3: Are the vectors $\mathbf{v_1} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ and $\mathbf{v_3} = \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix}$ in M_{22} linearly dependent or independent?