Math 265
Professor Priyam Patel
2/25/16

Class Handout \#11

Recall from last time:
Exercise 7: In \mathbb{R}^{3}, let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.

Determine whether $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ spans \mathbb{R}^{3}. This is the same as checking whether every vector $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3}$ is a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$.

Exercise 8: In P_{2}, let $\mathbf{v}_{\mathbf{1}}=t^{2}+2 t+1$ and $\mathbf{v}_{\mathbf{2}}=t^{2}+2$. Does $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ span P_{2} ?

Section 4.5: Linear Independence

Leading question: What is the span of $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ and what is the span of $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]\right\}$?

Exercise 1: Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}0 \\ 1 \\ 3 \\ -1\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 4\end{array}\right]$ in \mathbb{R}^{4}. Is the set of vectors
$S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ linearly dependent or linearly independent?

Exercise 1.5: Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{llll}0 & 1 & 3 & -1\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{llll}0 & 0 & 2 & 4\end{array}\right]$ in \mathbb{R}_{4}. Is the set of vectors $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ linearly dependent or linearly independent?

Exercise 2: Are the vectors $\mathbf{v}_{\mathbf{1}}=t^{2}+t+2, \mathbf{v}_{\mathbf{2}}=2 t^{2}+t$ and $\mathbf{v}_{\mathbf{3}}=t+4$ in P_{2} linearly dependent or linearly independent?

Exercise 3: Are the vectors $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{cc}0 & -3 \\ -2 & 1\end{array}\right]$ in M_{22} linearly dependent or independent?

