Math 265
Professor Priyam Patel
2/23/16

Class Handout \#10

Note about subspaces: The set consisting only of the zero vector in a vector space V is a subspace of V. So for example $\{\mathbf{0}\}$ is a subspace of \mathbb{R}^{n} and $\left\{O_{m n}\right\}$ is a subspace of $M_{m n}$.

Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ be vectors in a vector space V (think of V like \mathbb{R}^{n}). A vector \mathbf{v} is called a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ if $\mathbf{v}=a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\cdots+a_{k} \mathbf{v}_{\mathbf{k}}$ for some scalars $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{R}$.

Exercise 1: In \mathbb{R}^{3}, let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
Is $\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$ a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$? How about $\left[\begin{array}{r}-1 \\ -2 \\ 2\end{array}\right]$? How about $\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$?

Definition: Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a set of vectors in a vector space V. The span of S is the set of all linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ and is denoted by span S or $\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$. Additionally, span S is always a subspace of V.

Exercise 2: Let $V=\mathbb{R}^{3}$. How many vectors are in span $\{\mathbf{0}\}$?

How many vectors are in span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$?

Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in \mathbb{R}^{3}$. How many vectors are in $\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$? What can this look like geometrically?

Exercise 3: Let $V=P_{2}$ and let $S=\left\{t^{2}, t, 1\right\}$. What is span S ?

Definition: If S is a set of vectors in V and span $S=V$ then said is said to span V or we say that V is spanned by S.

Example 1: Consider the following set S of 2×3 matrices

$$
S=\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right\}
$$

Then span S consists of all matrices of the form $\left[\begin{array}{lll}a & b & 0 \\ 0 & c & d\end{array}\right]$, where a, b, c, d are real numbers.

Exercise 4: Suppose A is a 5×5 matrix with RREF $R=\left[\begin{array}{cccc}1 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

The null space of A, null A, is the solution space to the homogeneous system $A \mathbf{x}=\mathbf{0}$. Find vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in \mathbb{R}^{5}$ such that null $A=\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.

Exercise 5: In \mathbb{R}^{3}, let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}1 \\ -1 \\ 3\end{array}\right]$. Is the vector $\mathbf{v}=\left[\begin{array}{c}1 \\ 5 \\ -7\end{array}\right]$ in span $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$?

Exercise 6: In P_{2}, let $\mathbf{v}_{\mathbf{1}}=2 t-1$ and $\mathbf{v}_{\mathbf{2}}=t^{2}+2$. Is $\mathbf{v}=2 t^{2}-6 t+7$ in span $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$?

Exercise 7: In \mathbb{R}^{3}, let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.

Determine whether $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ spans \mathbb{R}^{3}. This is the same as checking whether every vector $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3}$ is a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$.

Exercise 8: In P_{2}, let $\mathbf{v}_{\mathbf{1}}=t^{2}+2 t+1$ and $\mathbf{v}_{\mathbf{2}}=t^{2}+2$. Does $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ span P_{2} ?

