Math 265
Professor Priyam Patel
1/14/16

## Class Handout \#1

## From last class:

Legal moves in the method of elimination for solving linear systems:

- interchange equation $i$ and equation $j$
- multiply an equation by a nonzero scalar
- replace the $j^{\text {th }}$ equation with $c$ times equation $i$ plus equation $j$

A system of linear equations can have:

- no solution
- a unique solution
- infinitely many solutions


## Section 1.2: Matrices

Definition: An $m \times n$ matrix is a rectangular array of $m \cdot n$ real (or complex) numbers arranged in $m$ horizontal rows and $n$ vertical columns:

The $i^{\text {th }}$ row of $A$ is $\operatorname{row}_{i}(A)=\left[\begin{array}{llll}a_{i 1} & a_{i 2} & \cdots & a_{i n}\end{array}\right]$.
The $j^{\text {th }}$ column of $A$ is $\operatorname{col}_{j}(A)=\left[\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right]$

When $m=n$ we say that $A$ is square and that the numbers $a_{11}, a_{22}, \ldots, a_{n n}$ form the main diagonal of $A$.

The entry $a_{i j}$ is called the $i, j^{\text {th }}$ element of $A$ or the $(i, j)$-entry. ( $i^{\text {th }}$ row and $j^{\text {th }}$ column).
Sometimes we use the shorthand $A=\left[a_{i j}\right]$.
Exercise 1: Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 1
\end{array}\right], B=\left[\begin{array}{cc}
1+i & 4 i \\
2-3 i & -3
\end{array}\right], C=[3], D=\left[\begin{array}{lll}
-1 & 0 & 2
\end{array}\right], E=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] .
$$

The size of $A$ is $\quad$, and $a_{12}=\quad$.
The size of $B$ is $\quad$, and $b_{22}=$
The size of $C$ is
The size of $D$ is , and $d_{12}=\quad$.
The size of $E$ is $\quad$, and $e_{31}=\quad$.
Definition: An $n \times 1$ matrix is also called an $n$-vector and denoted by $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$.
Definition: The set of all $n$-vectors with real entries is denoted $R^{n}$. The set of all $n$-vectors with complex entries is denoted $C^{n}$.

Definition: Two $m \times n$ matrices $A$ and $B$ are equal if they are equal entry-wise, that is, $a_{i j}=b_{i j}$ for all $i$ and $j$.
Matrix Addition:
Definition: If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are two $m \times n$ matrices, then $A+B$ is an $m \times n$ matrix $C=\left[c_{i j}\right]$ such that $c_{i j}=a_{i j}+b_{i j}$ for all $i$ and $j$. (add matrices entry-wise)

So if $A=\left[\begin{array}{lll}1 & -2 & 3 \\ 2 & -1 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 4 \\ 3 & 2 & 0\end{array}\right], A+B=[\square$
${ }^{* *}$ Note: The sum $A+B$ is only defined when $A$ and $B$ are of the same size.
${ }^{* *}$ Note: If $A$ is an $m \times n$ matrix and $O$ is the $m \times n$ zero matrix, then $A+O=A$. In particular, if $\mathbf{x}$ is an $n$-vector, then $\mathbf{x}+\mathbf{0}=\mathbf{x}$, where $\mathbf{0}$ is the $n$-vector all of whose entries are zero (the zero vector).

Scalar Multiplication:
Definition: If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and $r$ is a real scalar, then the scalar multiple of $A$ by $r$, denoted by $r A$, is the $m \times n$ matrix whose $(i, j)$-entry is $r \cdot a_{i j}$. (scale every entry)

Definition: If $A_{1}, A_{2}, \ldots, A_{k}$ are $m \times n$ matrices and $c_{1}, c_{2}, \ldots, c_{k}$ are real scalars, then an expression of the form

$$
c_{1} A_{1}+c_{2} A_{2}+\cdots+c_{k} A_{k}
$$

is called a linear combination of $A_{1}, \ldots, A_{k}$. The $c_{1}, \ldots, c_{k}$ are the coefficients.
Can also be written:

$$
\sum_{i=1}^{k} c_{i} A_{i}=c_{1} A_{1}+c_{2} A_{2}+\cdots+c_{k} A_{k}
$$

Definition: If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix, then the transpose of $A$, denoted by $A^{T}=\left[a_{i j}^{T}\right]$, is the $n \times m$ matrix defined by $a_{i j}^{T}=a_{j i}$. (The $(i, j)$-entry of $A^{T}$ is equal to the $(j, i)$-entry of $A$.)

